The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Optimizing a Thermal Process

A thermal processing scenario is modeled whereby two heaters raise the temperature of a gas flowing through a channel. The Optimization Module is used to find the heater power to maximize the outflow temperature, while maintaining a constraint on the peak temperature at the heaters themselves.

Lithium-Ion Battery Impedance Application

The goal with this application is to explain experimental electrochemical impedance spectroscopy (EIS) measurements and to show how you can use a simulation app along with measurements to estimate the properties of lithium-ion batteries. The Lithium-Ion Battery Impedance app takes measurements from an EIS experiment and uses them as inputs. It then simulates these measurements and runs a ...

Shape Optimization of a Capacitor Design

This example exemplifies how to optimize the design of a capacitor through optimization. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Changing the Dimensions of a Model Using Shape Optimization](https://www.comsol.com/blogs/changing-the-dimensions-of-a-model-using-shape-optimization/)".

An Introduction to Shape Optimization in COMSOL

This example exemplifies the basics in how to optimize shapes using COMSOL Multiphysics®. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Designing New Structures with Shape Optimization](https://www.comsol.com/blogs/designing-new-structures-with-shape-optimization/)".

Optimizing a Flywheel Profile

The radial stress component in an axially symmetric and homogeneous flywheel of constant thickness exhibits a sharp peak near the inner radius. From there, it decreases monotonously until it reaches zero at the flywheel’s outer rim. The uneven stress distribution reveals a design that does not make optimal use of the material available. Given specified flywheel mass and moment of inertia, ...

11–15 of 15
Next |
Last