Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Mixed Diffuse-Specular Radiation Benchmark

This model shows how to use the Mathematical Particle Tracing interface to simulate mixed diffuse-specular reflection between surfaces in an enclosure. This model is separated in two parts. The first part compares the heat fluxes computed by the Mathematical Particle Tracing interface with the exact solution for two identical infinitely long parallel grey plates under mixed diffuse-specular ...

Transparent Light Pipe

Light pipes are structures that can be used to transport light between different locations. In general, they can be divided into two major groups: tubes lined with a reflective coating and transparent solids that contain light via total internal reflection. In this tutorial, light is transported through a bent light pipe by total internal reflection. The effect of the pipe shape on the ...

Hexagonal Grating

A plane wave is incident on a reflecting hexagonal grating. The grating cell consists of a protruding semisphere. The scattering coefficients for the different diffraction orders are calculated for a few different wavelengths.

Nonisothermal HI Reactor

In the case of a perfectly mixed nonisothermal system, you have to set up both the time-dependent material and energy balances. There are no spatial concentration gradients because the system is perfectly mixed, so the Reaction Engineering interface can create a model without evaluating the material-transport properties.

Geometric Parameter Optimization of a Tuning Fork

This model computes the fundamental eigenfrequency and eigenmode for a tuning fork that is synchronized from Solid Edge via the LiveLink interface. The length of the fork is then optimized so that the tuning fork sounds the note A, 440 Hz.

Modeling a Conical Dielectric Probe for Skin Cancer Diagnosis

The response of a millimeter wave with frequencies of 35 GHz and 95 GHz is known to be very sensitive to water content. This model utilizes a low-power 35 GHz Ka-band millimeter wave and its reflectivity to moisture for non-invasive cancer diagnosis. Since skin tumors contain more moisture than healthy skin, it leads to stronger reflections on this frequency band. Hence the probe detects ...

Neutralization of Chlorine in a Scrubber

This example studies the kinetics of the neutralization of chlorine gas in water solution. The model assumes that the fluid volume is perfectly mixed and constant. This means that the chlorine has dissolved to an almost saturated state (1·10-2 mol/m3) and that the hydroxide has also mixed well throughout, as would be the case for a very small amount of fluid in a scrubber. The study allows ...

Multicomponent Tubular Reactor with Isothermal Cooling

This application uses the Chemical Reaction Engineering Module to study an elementary, exothermic, irreversible reaction in a tubular reactor (liquid phase, laminar flow regime). To keep its temperature down, the reactor uses a cooling jacket with a constant coolant temperature. The steady-state behavior of the reactor is investigated. The application visualizes how the Chemistry and Transport ...

Piezoelectric Rate Gyroscope

This model shows how to analyze a tuning fork based piezoelectric rate gyroscope. The direct piezoelectric effect is used to drive an in-plane tuning fork mode. This mode is coupled to an out of plane mode by the Coriolis force and the resulting out of plane motion is sensed by the reverse piezoelectric effect. The geometry of the tuning forks is designed so that the eigenfrequencies of the ...

Corrugated Circular Horn Antenna

The excited TE mode from a circular waveguide passes along the corrugated inner surface of a circular horn antenna where a TM mode is also generated. When combined, these two modes give lower cross-polarization at the antenna aperture. By using this application, the antenna radiation characteristics, as well as aperture cross-polarization ratio can be improved by modifying the geometry of the ...

Quick Search