技術情報とプレゼンテーション

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Acoustic Field Comparison of High Intensity Focused Ultrasound Using Experimental Characterization and Finite Element Simulation

J. L. Teja[1], A. Vera[1], L. Leija[1]
[1]Department of Electrical Engineering, Cinvestav-IPN, Mexico D.F., Mexico

High Intensity Focused Ultrasound (HIFU) is used as a noninvasive technique of tissue heating and ablation for different medical treatments. This paper presents a quantitative comparison of HIFU acoustic fields experimentally obtained versus simulated acoustic fields. Acoustic field characterization was realized in two HIFU transducers using water as a propagation medium. Also, simulations were ...

Model of an Interdigitated Electrodes System for Cell Counting Based on Impedance Spectroscopy

E. Bianchi[1][2], F. Bellati[1], E. Rollo[2], G. Dubini[1], C. Guiducci[2]
[1]Politecnico di Milano, LaBS, Laboratory of Biological Structure Mechanics, Milano, Italy
[2]Swiss Federal Institute of Technology (EPFL), Laboratory of Life Sciences Electronics - Swiss Up Chair, Lausanne, Switzerland

A model of a cell counter sensor based on Impedance Spectroscopy (IS) has been implemented in COMSOL Multiphysics. The cell counter is a silicon-based microdevice consisting in 3D electrodes placed in a wide microchannel: cells flow in the microchannel through the electrodes to be detected. The model allows to evaluate the functionality of the device depending on geometrical parameters and ...

Heat Transfer and Phase Transformation on Matrix Assisted Pulsed Laser Evaporation (MAPLE) of Biocompatible Thin Layers

E. Lacatus[1], G.C. Alecu[1], M.A. Sopronyi[2], A. Tudor[1]
[1]POLITEHNICA University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique is used for the deposition of high quality biocompatible polymer thin films. During the deposition process the temperature of the laser target should be kept below 193K to assure the proper quality of both evaporation and deposition phases of the process. On a first approach COMSOL Multiphysics® was used to describe and analyze the ...

Analysis of 3D Biocompatible Additive Structure Using COMSOL Multiphysics® Software - new

E. Lacatus[1], M. A. Sopronyi[2], G. C. Alecu[1], A. Tudor[1]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

For biocompatible prosthetics, from dental implants up to bone parts, manufacturers have to find the best way to correlate process parameters and the material properties as to meet the unique needs of individuals. Additive manufacturing techniques aim at creating complex biocompatible structures able to overcome the present shortfalls of the metal and metal alloys implants related to ...

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in Silico

P. Wallin[1], E. Bernson[1], J. Gold[1]
[1]Chalmers University of Technology, Applied Physics, Biological Physics, Gothenburg, Sweden

Cell migration of endothelial cells along gradients is an important process in vivo and an interesting target for cancer therapeutics. Microfluidics offer very powerful tools to study such migration processes in detail in the lab. In this study, we describe a model to simulate molecular gradients in a diffusion based microfluidic gradient generator and how a cell senses these gradients via cell ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Calibration of a Bio-Kinetic Model to Simulate Microalgae Growth - new

A. Solimeno[1], J. Garcia[2]
[1]Department of Hydraulic, Maritime and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Universitat Politecnica de Catalunya, Barcelona, Spain

The aim of present work is to present and calibrate a new mechanistic model that includes physical and biokinetic processes to reproduce the algae growth in photobioreactor or ponds during long-term scenarios. A COMSOL Multiphysics® model is used to implement the microalgae processes mainly based on River Water Quality Model 1 (RWQM1) (Reichert et al., 2011). The main innovation of the model is ...

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Pushability Model of a Microcatheter for Intravascular Procedures

M. Miliani[1], F. Piccagli[1]
[1]Medtronic Invatec S.p.A., Roncadelle, BS, Italy

During peripheral intravascular interventions one of the main issues is the correct deployment of the guidewire (GW) to the anatomical site which has to be treated, often supported by a microcatheter. There is a trade-off between the microcatheter flexibility and its push-ability to be able to reach the anatomical site. The catheter design has been defined with 2 transition zones. A parametric ...

Quick Search