Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Experimentally Matched Finite Element Modeling of Thermally Actuated SOI MEMS Micro-Grippers Using COMSOL Multiphysics

M. Guvench[1], and J. Crosby[1]
[1]University of Southern Maine, Gorham, Maine, USA

In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the application of electrical current via Joule heating; it expands and creates motion. In the design of many MEMS devices ...

Robust and Reliability-based Design Optimization of Electromagnetic Actuators Using Heterogeneous Modeling with COMSOL Multiphysics and Dynamic Network Models

H. Neubert[1], A. Kamusella[1], and T-Q. Pham[2]
[1]Technische Universität Dresden, Germany
[2]OptiY e. K. Aschaffenburg, Germany

For an exemplary electromagnetic actuator used to drive a Braille printer, a design optimization was performed. The optimization involves stochastic variables and comprises nominal optimization, robustness analysis and robust design optimization. A heterogeneous model simulates the static and the dynamic behavior of the actuator and its non-linear load. It consists of a network model in ...

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program architecture is explained and is used to simulate two applications. The first calculates the voltage induced by an ...

Multi-Domain Analysis of Silicon Structures for MEMS Based-Sensors

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Chungli,Taiwan
[2]National Tsing Hua University, Hsinchu, Taiwan

Investigation in this paper aims at performing Mechanical Stress Strain analysis, Thermal, Piezoresistive and Piezoeletric analysis of Silicon Structures using COMSOL. The simulation results have been cross checked by mathematical calculation.

Strong Magnetic Field and Its Application

Y. Song
Huazhong University of Science and Technology, Wuhan, China

High magnetic field research has yielded fruitful results. Since 1913, associated with the magnetic field there are 19 Nobel Prizes, including a prize for medicine, five chemistry prizes, and 13 physics prizes. In recent years, the international community under the conditions of strong magnetic field is very active in scientific research, involving many disciplines such as physics, chemistry, ...

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Study of Fluid Dynamics and Heat Transfer in MEMS Structures

S. N. Das[1], G. Bose[2]
[1]Centurion University of Technology and Managment, Jatani, Bhubaneswar, Orissa, India
[2]Institute of Technical Education and Research, SOA University, Bhubaneswar, Orissa, India

This paper describes the characteristics of MEMS microchannel and various issues of its designing. Here the major parameters are pressure drop and heat transfer rate. Various structures are modeled and optimized to get a minimum pressure drop and maximum heat transfer rate. The simulation results provide the characterization for Temperature, Mass flow rate, Pressure drop and Reynolds number. ...

Effect of Fluid Conditions on Air-Liquid Interface in Hydrophobic Micro Textured Surface

S. Takahashi[1], S. Ogata[1]
[1]Tokyo Metropolitan University Hachioji City, Tokyo, Japan

We studied the influence of a number of gas-liquid interface on the drag reduction effect by numeric simulation. Level set method was used for an analysis of gas-liquid interface. The analytic model is rectangular channel of height h = 5 micrometer and width w = 20 micrometer with two hydrophobic microstructures in bottom of channel. In this channel, we found that the liquid penetrates in the ...

Analyte Capture from Liquid Samples: Size Matters

M. Weber[1], M. Reed[1]
[1]Yale University, New Haven, CT, USA

Arrays of vertical pillars, Micro Purification Chips, have been widely used for analyte capture from liquid samples [Henderson et. al, 2006], [Toner et. al, 2007], [Stern et. al, 2010]. However exact understanding of the capture efficiency mechanisms has not been previously explained. Here we present a model in COMSOL Multiphysics® which calculates analyte capture efficiency based on initial ...