Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics System Simulation for MEMS Inertial Sensors

R. Sattler
University of Applied Sciences, Regensburg, Germany

This paper gives an overview of modelling microsensors on geometry and system level. The focus will be on the generation of the multiphysics reduced order system model and the coupling with package and ASIC models. The method is based on modal superposition. This means all the details of the sensor can be considered in a finite element model. The mechanical mode shapes of this model form the ...

Shape, Convection and Convergence

R. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically manifested by instability in the calculation and a failure of the model to converge. This paper presents a new ...

Computational Simulation of Electrohydrodynamic Systems Pertaining to Micro and Nano scale Fluid Flow Phenomenon

M. Seiler[1], and B. Kirby[2]
[1]Department of Engineering Physics, Cornell
University, NY, USA
[2]Department of Mechanical Engineering, Cornell
University, NY, USA

Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally calculating systems of fluid flow phenomena governed by AC Electroosmosis in the micro and nano scale regimes.

Magnetic Nanoparticles for Novel Granular Spintronic Devices

A. Regtmeier[1], A. Weddemann[2], I. Ennen[3], and A. Hütten[1]
[1]Dept. of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
[2]Dept. of Elect. Eng. and Comp. Science, Lab. for Electromagnetic and Electronic Syst., MIT, Cambridge, MA
[3]Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria

Superparamagnetic nanoparticles have a wide range of applications in modern electric devices. Recent developments have identi fied them as components for a new type of magnetoresistance sensor. We propose a model for the numeric evaluation of the sensor properties. Based on the solutions of the Landau-Lifshitz-Gilbert equation for a set of homogeneously magnetized spheres arranged in highly ...

Electric Field Induced Patterning in Thin Films

A. Atta [1], S. Dwivedi [1], Vivek [1], R. Mukherjee [1],
[1] Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Interfacial structures/pattern, especially with small-scale dimensions, are important to the chemistry of materials in determining the optical, electrical, mechanical, or other physical properties of novel materials. Polymers are often used for surface patterning. The diversity, the relatively low cost, the convenient mechanical properties and the compatibility with most patterning techniques ...

Droplet Generation by Means of a Two-Fluid Probe

B.P. Cahill[1], M. Quade[1], G. Gastrock[1], K. Lemke[1], J. Metze[1], and D. Beckmann[1]

[1]Institut für Bioprozess und Analysenmesstechnik e.V., Rosenhof, Heilbad Heiligenstadt, Germany

This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn into the inner tubing. In this way, droplets of cell medium are entrained into the outlet tubing forming a ...

Modeling Electric Fields in Slit Capillary Array Fluidic Actuators with Complex Electrode Geometries

J. Frey[1], A. Droitcour[1], D. Laser[1]
[1]Wave 80 Biosciences, San Francisco, CA, USA

With their small size, low manufacturing cost, fast transient response, and capacity to generate fluid power directly from small electrical power sources, microdevices incorporating electroosmostic flow (EOF) have wide-ranging applications, including newly developed high-performance bioassay systems suitable for use in resource-limited settings. We report on a class of EOF-based devices called ...

Resonant Frequency Analysis of Quartz Shear Oscillator

T. Satyanarayana[1], V. Sai Pavan Rajesh[2]
[1]NPMASS Centre, Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India
[2]Lakireddy Bali Reddy Autonomous Engineering College, Mylavaram, Andhra Pradesh, India

The most commonly used type of resonator is the AT-cut, where the quartz blank is in the form of a thin plate cut at an angle to the optic axis of the crystal. This paper reports the modeling of a quartz oscillator for a resonant frequency analysis based on piezoelectric effects. The proposed oscillator consists of a single quartz disc with two electrodes on the top and bottom surfaces of the ...

Janus 颗粒自驱运动的数值模拟

崔海航 [1], 王雷磊 [1], 谭晓君 [1],
[1] 西安建筑科技大学,西安,陕西,中国

Janus 颗粒是由物理或化学性质不同的两部分所构成的颗粒的总称。由于其结构的特殊性以及自驱动特性使其在MEMS、药物传输等领域有着潜在的应用价值。本文基于COMSOL Mutiphysics® 4.3a 多物理场耦合模拟平台对不同形状的 Pt-SiO2 型 Janus 颗粒的在不同浓度 H2O2 溶液中的自扩散泳动进行了数值模拟,并进一步研究模拟了球形 Janus 颗粒的近壁面运动。

Detection of Magnetic Particles by Magnetoresistive Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]
[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we demonstrate the implementation of the micromagnetic equations for the description of ferromagnetic thin films in COMSOL Multiphysics®. We apply our model to magnetoresistive sensors consisting of several soft ferromagnetic layers and their response to magnetic particles. The magnetization dynamic of the particles needs to be described in a similar manner, though due to size ...