Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Frequency Analysis of Si-Wafers with Variable Size and Boundary Conditions

E. Gehrig [1],
[1] Hochschule RheinMain, University of Applied Sciences, Wiesbaden Rüsselsheim, Wiesbaden, Germany

Silicon wafers represent key elements in modern microelectronics or photovoltaics. Technological fabrications of wafer sizes with large diameters (e.g. 450 mm) allow an efficient realization for integrated circuits at low cost. However, this material shows a high sensitivity to vibrations that strongly depends on size and the positioning as well as orientation of a wafer in a mounting, realized ...

Effect of Groundwater Flow on the Subsurface Temperature within Crystalline Rocks of Southern Norway

Y. P. Maystrenko [1], O. Olesen [1],
[1] Geological Survey of Norway (NGU), Trondheim, Norway

The subsurface thermal regime has been investigated in boreholes from southern Norway. During the purely conductive 2D thermal modeling, the COMSOL Heat Transfer for Solids interface has been used to simulate heat transfer by heat conduction. COMSOL physics interfaces Heat Transfer in Porous Media and Porous Media and Subsurface Flow/Darcy's Law have been used to carry out a fully coupled ...

Simulation Using an Iterative Procedure to Account for Nonlinear Magnetic Properties of Steel

S. Barrez [1],
[1] Vallourec, Boulogne-Billancourt, France

In inductive heating simulations the electromagnetic properties of the steel have a significant impact on the temperature pattern along the heated product. Indeed, taking into account the non-linearity of the ferromagnetic material properties is a key point to have relevant simulation results. In particular, it is important to correctly include the nonlinear relationship between the magnetic ...

Modeling Directed Self-Assembly of Block Copolymers for Lithographic Applications

A. Fouquet [1], R. Orobtchouk [2], J. Hazart [1],
[1] CEA-LETI, Grenoble, France
[2] Institut des Nanosciences de Lyon (INL), Villeurbanne, France

Nano patterning for chip manufacturing has reached its limitation with 193i lithography standard process. Directed Self Assembly (DSA) of Block Co-Polymers (BCP) is envisaged as an alternative complementary technique that can reduce critical dimension and pitch with high throughput and limited cost [1]. For contact layers that require patterning of cylinders with diameter of tens nanometers, DSA ...

Free Convection In A Square Cavity Partially Filled With Porous Media With Spatial Wall Temperature

A. I. A. Alsabery [1]
[1] Universiti Kebangsaan Malaysia (UKM), Malaysia

Free convective fluid flow and heat transfer in cavity domains has received considerable attention over the past few years and the importance of this problem is due to the broad spectrum of industrial applications and environmental situations. The aim of this study is to investigate the effect of Darcian free convective heat transfer in a square cavity partially filled with porous media with ...

Simulation of a Rotary Magnetorheological Damper - new

D. Harder [1], L. Fromme [1], R. Naumann [2],
[1] University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany
[2] University of Applied Sciences Bielefeld, ISyM – Institute of System Dynamics and Mechatronics, Bielefeld, Germany

This paper presents a simulation model of a rotary damper filled with a magnetorheological fluid (MRF). The most important characteristic of the MRF is the variable viscosity, which can be controlled by an external magnetic field. In the simulation model, the fluid is described as a Bingham fluid model which is coupled to an electromagnetic field simulation to analyze the damping characteristic ...

Optoelectronic Transducer with an Optical Fiber Transmission Used for Current Measurement

J. Golebiowski [1],
[1] Dept. of Semiconductor and Optoelectronics Devices, Lodz University of Technology, Lodz, Poland

The transducer's construction used for current measurement in medium voltage power lines for current values kA is shown. The transducer involves magnetic circuit with a gap in which a MEMS structure with a movable cantilever is placed. The beam is made of silicon with a NiFe layer. The beam with the ferromagnetic layer is deflected due to effecting magnetic field. The deflection of the beam is ...

Green Walls for Sustainable Buildings and Cities: Aerodynamic Characterization of Vegetation

K. Koch [1], R. Samson [1], S. Denys [1],
[1] University of Antwerp, Antwerpen, Belgium

A wind tunnel experiment was modelled using COMSOL Multiphysics® CFD software. A k-ω coupled turbulence model was considered including the Brinkman equation for stationary air flow through a porous vegetation section.

Numerical Design of a Test Plant for Dynamic Analysis of High Temperature Thermoelectric Generators

M. Rohne [1], A. Schlott [1], V. Pacheco [1], J. Meinert [1],
[1] Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Dresden, Germany

Thermoelectric generators (TEG) use Seebeck’s effect to directly convert heat into electricity. TEG represent, therefore, a promising option for energy harvesting of waste heat, for example in car exhaust systems. To investigate the dynamic behavior of high temperature TEG, a test facility was numerically designed and finally constructed. Transient thermal simulations were performed in order to ...

Simulation of a Dynamic Scraped Surface Heat Exchanger for Non-Newtonian Fluids

S. Birla [1],
[1] ConAgra Foods, Omaha, NE, USA

Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. One of the factor posing difficulties to heat transfer is viscosity. Highly viscous fluids tend to generate deep laminar flow, a condition with very poor heat transfer rates and high pressure losses involving a ...