技術情報とプレゼンテーション

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

ComsolGrid – A Framework For Performing Large-Scale Parameter Studies Using COMSOL Multiphysics and Berkeley Open Infrastructure for Network Computing (BOINC)

C.B. Ries, and C. Schröder
University of Applied Sciences Bielefeld, Germany

BOINC (Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving large-scale and complex computational problems by means of public resource computing (PRC). In contrast to massive parallel computing, PRC applications are distributed onto a large number of heterogeneous client computers connected by the Internet where each computer is assigned an individual task ...

Simulation of a Forming Process for Joining a Piezo Aluminium Module

M. Hackert, S.F. Jahn, and A. Schubert
Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany

The fabrication of piezo aluminium composite modules for sensor and actor applications with mass production technologies is in the scope of the SFB/Transregio 39 PT-PIESA project funded by the (German Research Foundation). After forming of cavities with a width of 0.3 mm into aluminium sheets by micro impact extrusion and the insertion of 0.25 × 0.25 mm2 piezo rods, a joining of the rods into ...

Experimental and Numerical Fluid Flows Study on a X-Millichannel

C. Wolluschek[1], F. Etcheverry[2], M. Cachile[2], and J. Gomba[3]
[1]Mecánica de Fluidos e Ingeniería Térmica, Centro tecnológico Cemitec, Noáin, Navarra, Spain
[2]Grupo de Medios Porosos, Facultad de Ingeniería, UBA, Buenos Aires, Argentina
[3]Instituto de Física Arroyo Seco, UNCPBA, Tandil, Argentina.

In this work, a COMSOL model that predicts velocity and concentration fields inside an X-shaped millichannel (4 mm diameter) is developed. Water and a ink low concentration are injected simultaneously in the two inlets of the device. The mass transfer problem is solved by a Fickian model (solute concentration is low compared with the solvent). The parameters in this study are: initial inlet mass ...

Influence of pH and Carbonate Buffering on the Performance of a Lactate Microbial Fuel Cell

A.Torrents, N. Godino, F.J. del Campo, F.X. Muñoz, and J. Mas
Universitat Autònoma de Barcelona, Spain

Microbia Fuel Cells (MFC’s) are complex environments where electrochemical, physical and biological aspects must be considered together. In this work we present a 1D model partially describing a Shewanella oneidensis MFC that degrade sodium lactate [lactate -> Acetate + CO2 + 2H+ + 2e-]. The model, simulated using COMSOL, focuses on pH implications of the MFC operation. Release of protons ...

Investigation Of Bone Marrow Stem Cells In The Bone Marrow Niche In An In Vitro System

P. Lezuo, M. Stoddart, and M. Alini
AO Research Institute, Davos, Grison, Switzerland

We aim to develop an in vitro culture system to mimic the human bone marrow stem cell niche in an artificial perfusion bioreactor environment to culture human adult stem cells. State of the art human bone marrow stem cell research shows that even smallest changes in the physical, thermo dynamical or biochemical environment induce a differentiation of human bone marrow stem cells into other cell ...

COMSOL Assistance for the Modeling of Cellular Microsystems

J. Berthier
CEA-LETI-Minatec
Grenoble, France

The developments of microsystems for biotechnology have been fast in the last few years, and no sign of slowing down is observed. It has begun with lab-on-chip for genomics, especially for the recognition of DNA sequences, followed by protein reactors and immunoassays, and today the emphasis is on cellomics. Cell-chips are design to monitor the behavior of cells, individually or as a group, ...

3D FEM-analysis of a Micromachined Wind Sensor Based on a Self-heated Thermistor Array

A. Talic[1], S. Cerimovic[2], M. Mutapcic[2], R. Beigelbeck[1], and F. Keplinger[2]
[1]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

We present COMSOL-based analyses and design optimizations of a micromachined wind sensor. The sensor relies on eight germanium thermistors embedded in a thin silicon nitride membrane, where two orthogonally arranged ensembles, each consisting of four thermistors, are connected to form a double Wheatstone-bridge. In operation, each bridge is supplied by a constant current and the self-heating of ...

Intraplate Stress Analysis by COMSOL Multiphysics

G. Swetha, G. Pavankumar, and A. Manglik
National Geophysical Research Institute
Hyderabad
Andhra Pradesh, India

Mathematical modeling tools are extensively used in Geosciences to delineate the earth structure at various spatial scales as well as to simulate coupled earth processes involving multiphysics concepts. COMSOL, a Multiphysics finite element method based numerical modeling package, can be used to analyze complex systems like earth where various physical parameters are involved and ...

Simulation of Thermal Sensor for Thermal Control of Satellite Using COMSOL Multiphysics

G. Mangalgiri
BITS Pilani K K BIRLA GOA CAMPUS
Zuarinagar
Goa, India

The actuator comprises of a temperature sensitive composite deflecting beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes an expansion in the composite beam thereby causing it to deflect. The deflecting beam impinges on the piezoelectric crystal and generating voltage. Response curves for the deflection versus temperature for temperature ranges ...

Comparison of Computational Methods for the Estimation of the Dielectrophoretic Force Acting on Biological Cells and Aggregates in Silicon Lab-on-chip

S. Burgarella[1], F. Maggioni[2], and G. Naldi[2]
[1]STMicroelectronics, Agrate Brianza, Milan, Italy
[2]Department of Mathematics, University of Milan, Milan, Italy

Dielectrophoresis is a method for cell manipulation in miniaturized devices exploiting the dielectric properties of cells and/or cellular aggregates suspended in a fluid and subjected to a high-gradient electric field. The mathematical expression of the force is obtained by a multipole expansion whose terms involve increasing power of the particle\'s radius. Three methods for the expression of ...

Quick Search

2691 - 2700 of 2856 First | < Previous | Next > | Last