技術情報とプレゼンテーション

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design and Implementation of MEMS based Blood Viscometer for INR Measurement

J. G. Immanuel[1], K. Poojitha[1], B. Viknesshwar[1], A. Gupta[1]
[1]PSG College of Technology, Peelamedu, Coimbatore, Tamil Nadu, India

The paper brings out the designing and implementation of blood viscosity monitoring device that gives us the INR to measure the effectiveness of anti coagulant medications .When a blood vessel is damaged, clotting cascade begins that results in blood clot. This process is affected by several medical conditions where it becomes mandatory for a patient to intake anti-coagulants. Thus to monitor ...

Deformable Image Registration for Pleural Photodynamic Therapy

B. Liu[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Deformable image registration is a form of medical image processing that can provide insights into the development of phenomenon and variation in normal anatomical structure over time. Prior to post-operative pleural photodynamic therapy (PDT), a series of CT scans of lungs will be acquired. During PDT treatment, an infrared navigation system is used to contour the lungs and provide real-time ...

Coupling Stochastic Boundary Perturbations with Fiber Drawing Heat Transfer

A. Emery[1]
[1]University of Washington, Seattle, WA, USA

The production of polymer fibers is done by drawing raw material (preform) in a vertical cylindrical furnace whose heated walls radiantly heat the preform. The wall temperatures are very high and the dominant heat transfer to the fiber is by radiation with little effect from the convective flow of gas in the furnace. In contrast, for polymer fibers the convection contribution is large, and ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Comparison Between Flow Simulations and Foam Experiments in Porous Media

R.R. Thorat[1], H. Bruining[1]
[1]Petroleum Engineering, CiTG, TU Delft, Delft, The Netherlands

Recovery of oil by gas injection is usually inefficient due to the low viscosity of the gas, which results in bypassing of the oil. By adding surfactant solutions it is possible to get in-situ foam formation. Foam has a much higher “viscosity” and hence does not bypass the oil, leading to enhanced oil recovery. In this context, the foam propagation is studied experimentally and theoretically. ...

Hydro-Mechanical Modelling of Infiltration Test for a Bentonite-Sand Mixture: Model Verification and Parameter Identification

M. Hasal[1], R. Hrtus[1], Z. Michalec[1], R. Blaheta[1]
[1]Institute of Geonics AS CR, Ostrava, Czech Republic

The first aim of our work is to create a hydro-mechanical model (HM) of unsaturated fluid flow in bentonite-sand mixture (BSM) MX-80. The second aim is to validate and calibrate the developed model by using the data from a laboratory infiltration test of BSM. The used multi-physics model combines Richards type unsaturated flow with diffusive vapour flow and (nonlinear) elastic response of the ...

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging infants in adult coils. Two birdcage-type coils were loaded by a tissue model and their B1+ homogeneities ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Temperature Measurements of a Single Gold Nanoparticle under Laser Illumination

Kenji SETOURA et al.[1]

[1]The University of Tokushima, Tokushima, Tokushima, Japan

Temperature measurement of nanoparticles (NPs) under heating is an important technique in order to achieve potential applications such as photothermal cancer therapy and nanofabrication. We implemented the method to estimate the local temperature of a laser-heated gold NP on glass substrate in various surrounding media by applying the light scattering spectroscopy. We discuss experimental results ...

Characterization of the Process of Ultrasound Driven Dispersion of Nanoparticles in High Viscosity Liquids - new

P. Pasumarty[1], H. Choi[1]
[1]Clemson University, Clemson, SC, USA

Even though sonochemical reactors have been studied extensively for decades, there is limited data on their characterization when the volume of the sample is fixed. The Acoustics Module and COMSOL Multiphysics® software are used to resolve the pressure field. The validated numerical model will be used to compare different configurations; changing the Height (H), diameter (D) of the reactor and ...

Quick Search

2711 - 2720 of 3645 First | < Previous | Next > | Last