Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Simulations of Rod-Type Photonic Crystal Slabs as Resonant Microsystems for Optical Gas Sensors

C. Kraeh, and H. Hedler
Siemens AG, Munich
Munich, Germany

We are developing a solid state gas sensor that combines a small form factor with the high sensitivity of optical gas detection. The gas sensor is based on an optical resonant microsystem that is penetrated by gas molecules. This microsystem consists of an array of vertical rods in air forming a photonic crystal. Light propagates through the photonic crystal along a line defect waveguide. For ...

A Coupled Analysis of Heat and Moisture Transfer in Soils

E. Evgin, J. Infante Sedano, and Z. Fu
University of Ottawa
Ottawa, ON
Canada

This paper is a part of a study on energy piles for heating and cooling of buildings. Energy piles are used for two reasons: (1) to transfer structural loads to foundation soils, and (2) to transfer heat from foundation soils to the building for space heating in winter time and for cooling purposes in summer time by transferring heat from the building to the foundation soils. The efficiency of ...

Finite Element Analysis of Integrated Circuit Interconnect Lines on Lossy Silicon Substrate

S. Musa[1], M. Sadiku[1], and A. Emam[2]

[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Information Systems Department, King Saud University, Riyadh, Saudi Arabia

The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on an integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using the finite element ...

Going beyond Axisymmetry: 2.5D Vector Electromagnetics

Y.A. Urzhumov[1][,][2], N.I. Landy[1][,][2], C. Ciraci[2], D.R. Smith[1][,][2]
[1]Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
[2]Center for Metamaterials and Integrated Plasmonics, Pratt School of Engineering, Duke University, Durham, NC, USA

Linear wave propagation through inhomogeneous structures of size R?? (Fig.1) is a computationally challenging problem, in particular when using finite element methods, due to the steep increase of the number of degrees of freedom as a function of R/?. Fortunately, when the geometry of the problem possesses symmetries, one may choose an appropriate basis in which the stiffness matrix of the ...

Evaluation of Internal Electrical Heater for Pipe Temperature Control Using FEA Model

B. Xu[1], M. Heydrich[1], S. Edmondson[1], A. Jahangir [1]
[1]ShawCor Ltd., Toronto, ON, Canada

In oil and gas industries, electrical heaters are often used to control the internal pipe temperature. One important criterion for such test, is to maintain a uniform temperature range during the test. The objective of this study was to evaluate the heat transfer of one design of the internal electrical pipe heaters, by simulating both conduction and convection heat transfer around the heater ...

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Simulating Thermotherapeutic Response Induced by Thermal Padding for Treating Acute Injuries

J. Kantor[1], Y. Feng[1], C. Acosta[1], E. Massingill[1]
[1]University of Texas at San Antonio, San Antonio, TX, USA

Cryotherapy and thermotherapy are common methods of treatment for acute injuries ranging from ankle sprains to complex surgery. The idea behind such treatment is that a change in temperature will reduce pain and constrict fluctuations in blood flow at the targeted area. The purpose of this study is to simulate the vascularized tissue reaction and the resulting blood flow fluctuation from thermal ...

Structural Mechanics for Real Geometry of Basalt Woven Composites

J. Salacova[1]
[1]Technical university of Liberec, Department of Material Engineering, Liberec, Czech Republic

Woven composites with basalt reinforcement plain 1x1 are examined to define structural mechanics. Woven composites were created by the prepreg technology, 8 layers of plain-weave basalt fabrics were saturated by the precursor, polysiloxane matrix Lukosil®, and joint pressed during temperatures of 200°C and 600°C. The yarns consist of 8000 fibres assembled without twisting. Voids complete entire ...

Convective Cooling of Electronic Components - new

J. S. Crompton[1], H. Singh[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, LLC, Columbus, OH, USA

In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating temperature of devices result. To maintain operation and long term performance device temperature must be ...