Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

Streamer Propagation in a Point-to-Plane Geometry

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

Corona discharge is used in several applications such as surface treatment of polymers, photocopying or dust removal in air conditioning. Streamer formation is undesirable for most of these applications. Therefore, several studies have been dedicated to investigate the formation and propagation of streamers, which are still not fully understood. The most suitable models to describe streamers are ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

Simulation of Transport of Lipophilic Compounds in Complex Cell Geometry

Q.A. Chaudhry[1], M. Hanke[1], and R. Morgenstern[2]
[1]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
[2]Karolinska Institutet, Stockholm, Sweden

The mathematical modeling of the diffusion and reaction of toxic compounds in mammalian cells is tough task due to their very complex geometry. The heterogeneity of the cell, particularly the cytoplasm, and the variation of the cellular architecture, greatly affects the behavior of these toxic compounds. Homogenization techniques have been implemented for the numerical treatment of the model. ...

Numerical Study of Microfluidic Fuel Cell Performance

A. E. Khabbazi[1], A.J. Richards[1], and M. Hoorfar[1]
[1]School of Engineering, UBC Okanagan, Kelowna, BC Canada, Canada

Using COMSOL Multiphysics 3.5, a numerical model has been developed to determine the effect of the channel geometry and electrode configuration on cell performance based on polarization curves. The Butler-Volmer equation was implemented to determine the reaction rates at the electrodes. The Conductive Media DC module is used to model the electric fields within the fuel cell.

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Modeling of snRNP Motion in the Nucleoplasm

M. Blaziková[1], J. Malínský[2], D. Stanek[3], and P. Herman[1]
[1]Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
[2]Institute of Experimental Medicine, Prague, Czech Republic
[3]Institute of Molecular Genetics, Prague, Czech Republic

Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the Cajal body. We have previously shown that the free diffusion model does not fully describe the snRNP motion ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

Ignition Process of Microplasmas

H. Porteanu, and R. Gesche
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin, Germany

Microplasmas at atmospheric pressure are required in many applications, where treatments in normal ambient, with spatial resolution, are important. The interest on such miniaturized sources has increased due to the availability of a new generation of microwave sources based on high power GaN transistors. The present work deals with a simulation of the plasma formation after the application of ...

Magnetic Particle Buildup Growth on Single Wire in High Gradient Magnetic Separation  

F. Chen
Department of Chemical Engineering, M.I.T., Cambridge, MA, USA

Magnetic fluids containing nano or submicron magnetic particles and their application in food, biological and pharmaceutical systems have recently attracted increasing attention. Magnetic particles can be collected efficiently in magnetizable matrices (e.g. iron wires) in high gradient magnetic separation (HGMS) process. In this work, the dynamic buildup growth process is treated as a moving ...

2721 - 2730 of 3390 First | < Previous | Next > | Last