Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of a Direct Methanol Fuel Cell

J. Drillet [1],
[1] DECHEMA-Forschungsinstitut, Frankfurt, Germany

This work aims at the modelling of a 5 cm^2 Direct Methanol Fuel Cell (DMFC) with mixed serial/parallel serpentine flow fields in terms of current/voltage behavior. One of the main challenge to overcome consists on lowering the so-called methanol cross over from the anode through the polymer membrane to the cathode that is responsible for mixed-potential formation at the cathode where both ...

An Elastohydrodynamic Lubrication Model Considering Surface Roughness and Mixed Friction

J. Moder [1], F. Grün [1],
[1] Chair of Mechanical Engineering, Montanuniversität, Leoben, Austria

Highly loaded lubricated machine elements such as gears or camshafts are an integral part in a wide variety of technical products. Due to higher efficiency requirements these machine elements have to be improved continuously, which leads to the necessity to investigate physical phenomena taking in place in the contact zone. Because of very low film thicknesses the surface microstructure plays ...

Multiphysics Analysis of a Photobioreactor

L. T. Gritter [1], E. Dunlop [2], J. S. Crompton [1], K. C. Koppenhoefer [1]
[1] AltaSim Technologies, Columbus, OH, USA
[2] Pan Pacific Technologies Pty Ltd, Adelaide, South Australia, Australia

Photo-bioreactors generate biomass by providing a controlled environment for the cultivation of algae due to photosynthesis. Algae cultivation can be controlled through the operating parameters and bioreactor environment to allow for high productivity and the use of systems with large surface-to-volume ratios offers maximum efficiency in the use of light compared to alternative batch systems. ...

Uniform Reaction Rates and Optimal Porosity Design for Hydrogen Fuel Cells

J. H. Al-Smail [1]
[1] King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

We develop a porosity-optimization problem to improve the electrochemical reactions taking place in hydrogen fuel cells. We introduce a mathematical model, which involves a system of conservation laws defined in a porous space domain. Our goal is to find the domain's optimal porosity function that can make the oxygen-hydrogen reaction as uniform as possible. The optimal porosity design ...

Kinetics of Proteins in the Blood-Brain Barrier

K. Gandhi [1],
[1] University of California, Riverside, CA, USA

The delivery of chemotherapy for cancer into the central nervous system, in particular the brain, remains a challenge. This results in brain metastases commonly being a cause of death from cancer. Here, we look at the environment of the blood-brain barrier. Then, we explore two proteins (breast cancer resistance protein and p-glycoprotein) that may inhibit the transport of medications (erlotinib ...

Design of a MEMS Bolometer with Absorptive Element as Piezo-Protein

H. Sinha [1], A. Mukherjee[1], N. Chattoraj[1],
[1]Birla Institute of Technology Mesra, Ranchi, Jharkhand, India

Bolometer is a thermal infrared sensor used for measuring the intensity of radiation via the heating of a material due to the radiations. A bolometer consists of an absorptive element, a thin layered material, connected to a thermal reservoir. The result is that any radiation received on the absorptive element raises its temperature above that of the reservoir: the greater the absorbed ...

Optimal Thermal Design of Converged-Diverged Microchannel Heat Sinks for High Heat Flux Applications

D. Chakravarthii [1], S. Subramani [1], M. Devarajan [1],
[1] Univeristy of Science Malaysia (USM), Georgetown, Penang, Malaysia

With the advancements in aerospace technology, micro-electromechanical systems, hybrid data centres and microfluidics, the miniature size electronic chips in such applications are need of the century. The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of devices. Microchannel heat sinks are efficient method to dissipate heat when the ...

Design of Arrayed Micro-Structures to get Super-Hydrophobic Surface for Single Droplet and Bulk Flow Conditions

A. Mall[1], P. R. Jelia[1], A. Agrawal[1], R. K. Singh[1], and S. S. Joshi[1]

[1] Department of Mechanical Engineering, Indian Institute of Technology Bombay, Maharashtra, India

Surfaces with water contact angle greater than 150º are super-hydrophobic in nature and possess extraordinary water repelling properties. Various researches on wettability of textured surfaces in recent years have shown that texturing surfaces with micron-sized and nanosized patterns improves their hydrophobicity to a great extent. This report aims at optimizing the dimensions of square ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Finite Element Model of a Complex Glass Forming Process as a Tool for Control Optimization

F. Sawo[1] and T. Bernard[1]
[1]Fraunhofer Institute for Information and Data Processing IITB, Karlsruhe, Germany

This paper addresses the modeling of a complex glass forming process as an example of a complex, nonlinear distributed parameter system. The system is modeled by a fluid dynamics approach, which means that the forming is regarded as a fluid with free surfaces. Here, the coupling of the forming process with the heat flow is considered. The influence of crucial model parameters (e.g., dynamic ...