Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study on the Thermal Behaviors of LFP Aluminum-laminated Battery with Different Tab Configurations

M. Jia [1], S. Du [1],
[1] School of Metallurgy and Environment, Central South University, Changsha 410083, PR China

Abstract: A 3.2V/10Ah LFP aluminum-laminated batteries are chosen as the target of the present study. A three-dimensional thermal simulation model is established based on finite element theory and proceeding from the internal heat generation of the battery[13]. The study illustrates a three-dimensional relationship among the total internal heat generation rate of the battery, the discharge rate ...

Measuring the Spectra of Metamaterials at an Oblique Incidence

X. Ni[1,2], Z. Liu[1,2], and A.V. Kildishev[1,2]
[1]School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
[2]Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

The emergence of electromagnetic metamaterials has given rise to a variety of fascinating applications, including the perfect lens and the optical cloaking device. For a long time the study of the properties of metamaterials was limited to normal incidence only. However, it is extremely important to know the behavior of metamaterials especially in the area of imaging. In this paper, we use ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

Multi-Scale Modelling of Catalytic Microreactors

B. Hari[1] and C. Theodoropoulos[1]
[1]The University of Manchester, School of Chemical Engineering and Analytical Science, Manchester, UK

Microreactors are important alternative to conventional reactors in chemistry, chemical, pharmaceutical and semiconductor industries due to their operation characteristics such as increased mass and heat transfer, uniform flow, safety, high throughput through array configurations, smaller plant size and lower cost of production. Models for such reactors need to be able to describe both the ...

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water calorimetry. Since the dose distributions delivered by such beams are nonuniform, temperature signals ...

A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate

D. Statler[1], and R. Gupta[2]
[1]Mid-Atlantic Technology, Research and Innovation Center, South Charleston, WV, USA
[2]Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA

During the pyrolysis and combustion of polymers, heat is released and is typically measured with a cone calorimeter to better assess the polymer’s flammability. Modeling heat release rate, as assessed by cone calorimetry, has not been extensively studied for char-forming polymers, such as, polycarbonate. Here we determine the heat release rate with the help of a one-dimensional transient finite ...

Capacitance Computation of Multilayered and Multiconductor Interconnects Using Finite Element Method

S. Musa, and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

The development and analysis of interconnects in inhomogeneous structures such as very large scale integration chips, printed circuit boards, and multichip modules are essential for next-generation electronic products. In this paper, we illustrate fast and sufficiently accurate computation of capacitance matrices of multilayered and multiconductor interconnects applying the finite element ...

Supercritical CO2 Leakage Modelling for Well Integrity in Geological Storage Project

E. Houdu, O. Poupard, and V. Meyer
OXAND S.A., France

CO2 capture and storage constitutes a promising solution to control and reduce these emissions. Wellbore integrity is a key challenge to ensure long term safety and for public acceptance. For this objective, a two-phase flow model in porous media based on Darcy’s law has been proposed to simulate the CO2 leakage within the well at a rat hole area. The numerical simulations have highlighted ...

Prism Coupling of Light in Optical Waveguides

J.T. Andrews, R.R. Kumar, and P.K. Sen
Department of Applied Physics, S G S Institute Technology & Science, Indore, Maharashtra, India

We report the results of simulation showing light coupling in waveguides through prism coupling method. Prism coupling method of light coupling in waveguides is a dominant method adopted by photonic device fabricators. It is necessary to understand the effect various parameters on light coupling in such processes. We used industry standard PDE solver COMSOL Multiphysics to study and analyze the ...

2731 - 2740 of 3390 First | < Previous | Next > | Last