Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL in a New Tensorial Formulation of Non-Isothermal Poroelasticity

A. Mario-Cesar Suarez[1], and V. Fernando Samaniego[2]

[1]Faculty of Sciences, Michoacan University, Morelia, Mich., Mexico
[2]Faculty of Engineering, National University of Mexico, Mexico City, Mexico

The presence of a moving fluid in a porous rock modifies its mechanical response. Poroelasticity explains how the fluid inside the pores bears a portion of the total load supported by the rock. The remaining part of the load is supported by the elastic skeleton, which contains a laminar fluid coupled to the framework by equilibrium and continuity conditions. This work introduces an original ...

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Modeling Interface Response in Cellular Adhesion

G. Megali[1], D. Pellicanò[1], M. Cacciola[1], F. Calarco[1], D. De Carlo[1], F. Laganà[1], and F.C. Morabito[1]

[1]DIMET Department, Faculty of Engineering, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy

Constitutive properties of living cells are able to withstand physiological environment as well as mechanical stimuli occurring within and outside the body. We examined fluid flow and Neo-Hookean deformation related to the rolling effect. A mechanical model to describe the cellular adhesion with detachment is here proposed. We developed a finite element analysis, simulating blood cells attached ...

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]


[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by pure H2O. We considered a 1-D geometry and we developed a dynamic model that presents a clear interface ...

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. Development of an electrorefining cell, in which processing of 10 kg of simulated spent fuel will be demonstrated, is ...

Effects Of The Microstructure Of Fibrous Media On Their Acoustic Properties

C. Peyrega, and D. Jeulin
Center of Mathematical Morphology, Mines ParisTech, Fontainebleau, France

This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous network and the air surrounding it. At the microscopic scale the absorption of the acoustic wave is mainly ...

Thermal Analysis of Vacuum Distillation Chamber in Pyroprocessing Facility

D. Sujish, S. Agarwal, B. Muralidharan, B.K. Sharma, V. Suresh Kumar, B. Prabhakara Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

Non aqueous metal fuel reprocessing involves electrochemical deposition of spent metallic fuel on the cathode of an electrolytic cell. Apart from metal fuel, the cathode deposit would also contain occluded molten salts and liquid cathode. Subsequent purification and consolidation of these heavy metals is conducted in a vacuum retort. Here the cathode deposits are charged into graphite crucible ...

Simulation of Photonic Crystals Particle Filling by Electrospray

A. Coll, V. Di Virgilio, S. Bermejo, and L. Castañer
Universitat Politècnica de Catalunya, Barcelona, Spain

Photonic crystals are widely used in optical applications as waveguides and band filters. Filling the periodic structural material of photonic crystals with other materials is very useful in order to change the optical properties of the devices. In this paper electrostatic COMSOL simulations describing an electrospray deposition of particles in macroporous structures are performed.

Air Flow Characteristics Inside an Industrial Wood Pallet Drying Kiln

A-G. Ghiaus, M-A. Istrate, and A-M. Georgescu
Technical University of Civil Egineering, Bucharest, Romania

Analysis and optimization of air flow distribution inside drying kiln systems contribute to the improvement of the final product quality. The present study reports on the threedimensional numerical solution of air flow within a drying kiln enclosure. The air flow field is examined in different configurations and operation conditions. Depending on the off/on switched fans, we obtain various air ...

The Dissolution and Transport of Radionuclides From Used Nuclear Fuel in an Underground Repository

Y. Beauregard[1], M. Gobian[2], and F. Garisto[2]
[1]University of Western Ontario, London, ON, Canada
[2]Nuclear Waste Management Organization, Toronto, ON, Canada

In the Canadian concept for a deep geological repository for used nuclear fuel, the used fuel bundles are placed in containers consisting of an inner steel vessel surrounded by a copper shell. The filled containers are placed in excavated tunnels or boreholes and surrounded by a compacted bentonite clay buffer material. In the event of container failure, the rate of migration of radionuclides ...