Quick Search

Tin Melting Front

Application ID: 6234

This example demonstrates how to model phase transition by a moving boundary interface according to the Stefan problem. A square cavity containing both solid and liquid tin is submitted to a temperature difference between left and right boundaries. Fluid and solid parts are solved in separate domains sharing a moving melting front. The position of this boundary through time is calculated according to the Stefan energy balance condition. In the melt, motion generated by natural convection is expected due to the temperature gradient. This motion, in turn, influences the front displacement.

This model is included as an example in the following products:


The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the 製品仕様一覧 and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.