Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Theoretical Investigation of CMH Lamps Ignition Properties in Ar/Hg Penning Gas Mixtures

Sz. Beleznai[1], I. Maros[2]
[1]Budapest University of Technology and Economics, Budapest, Hungary
[2]General Electric Lighting, GE Hungary KFT, Budapest, Hungary

Two-dimensional plasma transport model was developed in COMSOL Multiphysics Plasma Module to investigate fundamental issues in ceramic metal halide (CMH) lamps starting using Ar/Hg penning gas mixture. The intent of this work is to provide insight into possible design rules that might be applied to the improvement of start-up in moderate pressure metal halide lamps. The model gives a complete ...

Electromagnetic Field Computations for Saturated Porous Media

S. Cambon[1], I. Bogdanov[1]
[1]CHLOE, Bâtiment UFR Sciences et Techniques, Pau Cedex, France

Non-conventional hydrocarbon resources become more and more challenging object for energy producing companies throughout the world. Being already known and long-explored method, the electromagnetically (EM) assisted recovery constitutes a promising idea of technology for deposits of such a kind. COMSOL has been used recently for modeling the thermal multiphase flow through porous media in the ...

SWRO (Desalination) Biofilm Remediation Technology Utilizing Centrifugal Micro-Fluids

E.M. Glenn[1]
[1]University of California, Irvine, CA, USA

Water-and-energy supply is a global issue of paramount importance. The demand for safe potable water is quickly exceeding the limits of natural regional water resources. Like oil, water is a finite resource; unlike oil, however, water has no alternatives. Water, energy and their environmentally sound solutions are interrelated; and of all the present-day environmental problems, those related to ...

Development and Production of a Box for Storage and Shipping of HDIs in the Upgrade of the CMS Experiment

F. Noto[1], S. Costa[2], N. Giudice[2], F. Librizzi[3], A. Rapicavoli[2], M.A. Saizu[4], V. Sparti[3]
[1]Instituto Nazionale Fisica Nucleare, Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2] Dipartimento di Fisica ed Astronomia, Instituto Nazionale Fisica Nucleare, Sezione di Catania, Catania, Italy; Università di Catania, Catania, Italy
[3]Instituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy
[4]Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

The Large Hadron Collider at CERN has begun operations at 7 TeV center of mass energy. CERN plans to run at this energy until the end of 2012 with the goal of providing an integrated luminosity of a few fb?¹ to the CMS and ATLAS experiments. The LHC will then shut down for 1.5 to 2 years to make the revisions necessary to run at ~14 TeV. Operation resumes in 2014. In 2017/18, there will be ...

COMSOL Multiphysics: Innovative Design and Engineering

S. Wang[1]
[1]Department of Mechanical Engineering, Kun Shan University of Technology, Tainan, Taiwan

Multiphysics simulation has been used extensively in our research for fluid flow and heat transfer applications. Our projects include: simulation of fluid dynamics in an active liquid heat sink for CPU cooling, impeller design for a pipe flow generator with computational fluid dynamics (CFD), investment casting with plastic rapid prototype patterns, phase change materials with rapid prototyping ...

Application for Ultrasensitive Biosensing by Nanodevise

[1]Takatoki YAMAMOTO

Tokyo Institute of Technology, Yokohama, Kanagawa, Japan[1]

It is possible to obtain novel functions using nano-scaled structures and related physics that are impossible to be realized by conventional macro-scale technology. Thus, we are trying to understand the physics dominated by nanostructure and to develop the biosensing applications. Here, we exploit the interaction between materials and electrostatic field created by nanostructure, and introduce ...

Motion of Uncharged Particles in Electroosmotic Flow through a Wavy Cylindrical Channel

N. Qudus[1], T. Mahbub[1], S. A. Ali[1], and M. Shajahan[1]
[1] Bangladesh University of Engineering and Technology, Dhaka Bangladesh

A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains continuity and Navier–Stokes equations for the solution of fluid flow. A particle trajectory model was ...

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool system ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

2671 - 2680 of 2858 First | < Previous | Next > | Last