The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Thermal Performances of Windows

During the design of a building, environmental issues have gained considerable influence in the entire project. One of the first concerns is to improve thermal performances. In this process, simulation software are key tools to model thermal losses and performances in the building. The international standard ISO 10077-2:2012 deals with thermal performance of windows, doors and shutters. It ...

3D Supersonic Flow in a Channel With a Bump

This example models 3D supersonic flow, including the effect of a shock, in a straight channel with a small obstacle on one of the walls. As the flow hits the obstacle, shock waves are diffracted from the obstacle and walls of the channel. The propagating shock waves form a pattern in the velocity profile and density distribution. The model makes use of the adaptive mesh refinement feature in ...

Shape Optimization of a Capacitor Design

This example exemplifies how to optimize the design of a capacitor through optimization. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "[Changing the Dimensions of a Model Using Shape Optimization](https://www.comsol.com/blogs/changing-the-dimensions-of-a-model-using-shape-optimization/)".

Stefan Tube

This example illustrates the use of the Maxwell-Stefan diffusion model available with the Transport of Concentrated Species interface. It models multicomponent gas-phase diffusion in a Stefan tube in 1D. In this case, it is a liquid mixture of acetone and methanol that evaporates into air. The concentration profiles are modeled at steady-state and validated against experimental data by Taylor ...

Branch-Line Coupler

A Branch Line Coupler (Quadrature 90° Hybrid) is a four-port network device with a 90° phase difference between two coupled ports. The device can be used for a single antenna Transmitter/Receiver system or an I/Q signal splitter/combiner. The objective of this model is to compute the S-parameters and to observe the matching, isolation, and coupling around the operating frequency.

Homogeneous Charge Compression Ignition of Methane

Homogeneous Charge Compression Ignition (HCCI) engines are being considered as an alternative to traditional spark- and compression-ignition engines. As the name implies, a homogeneous fuel/oxidant mixture is auto-ignited by compression with simultaneous combustion occurring throughout the cylinder volume. Combustion temperatures under lean burn operation are relatively low, resulting in low ...

Isoelectric Separation

This example applies the *Electrophoretic Transport* and *Laminar Flow* interfaces to model isoelectric separation in a free-flow electrophoresis device. A stream containing six different ionic species is shown to be divided into pure component streams by means of migrative transport in an electric field. Free-flow electrophoresis can separate macromolecules such as proteins, based on their ...

Optimizing Band Dispersion in an Electroosmotic Flow Through a Curved Microchannel

This model studies the dispersion of neutral species band through curved microchannel in an Electroosmotic flow (EOF) . Using Optimization module, geometric optimization is carried out to minimize the curve-induced dispersion.The central idea is to parametrically represent the geometry by Bézier curves and these geometric parameters are further treated as optimization parameters in the ...

Modeling of Wires, Surfaces, and Solids with Boundary-Element-Based Electrostatics

These examples demonstrate using the *Electrostatics, Boundary Elements* interface, introduced in version 5.3 of the COMSOL Multiphysics® software. In the blog post associated with these files, "[How to Create Electrostatics Models with Wires, Surfaces, and Solids](/blogs/how-to-create-electrostatics-models-with-wires-surfaces-and-solids/)", we demonstrate the pros and cons of using the boundary ...

Absorptive Muffler with Shells

This model describes the pressure wave propagation in a muffler for an internal combustion engine. The purpose of the model is to show how to analyze both inductive and resistive damping in pressure acoustics as well as coupling the fluid to the surrounding elastic shell structure of the muffler. Finally, the eigenmodes of a pure structural problem is analyzed and the modes compared to peaks ...