The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Capacitively Coupled Plasma

The NIST Gaseous Electronics Conference has provided a platform for studying Capacitively Coupled Plasma (CCP) reactors, which is what this application is based upon. The operating principle of a capacitively coupled plasma is different when compared to the inductive case. In a CCP reactor, the plasma is sustained by applying a sinusoidal electrostatic potential across a small gap filled with a ...

Perforated Well

Analysis of fluid flow into wells often begins with the assumption that the intake fluid is uniform along the entire length of wellbore. This assumption runs into trouble when applied to the modeling of perforated wells. When these wells are emplaced, the deep bore hole is lined by impermeable materials. Later a machine pierces the lining intake fluids in the productive reservoir zones and ...

Thermal Bridges in Building Construction - 3D Structure Between Two Floors

This model studies the heat conduction in a building structure separating two floors from the external environment. Four materials with distinct thermal conductivities k compose the structure. The exterior and interior boundaries are facing environments respectively at 0°C and 20°C. The lowest temperatures on internal surfaces and the heat fluxes through each surface is compared with published ...

Ammonia Synthesis PFR

This example demonstrate the modeling of a plug flow reactor for the synthesis of ammonia in the Haber-Weiss process. The catalytic reactor in this process operates under non-isothermal conditions, where temperature and pressure varies substantially along the length of the reactor, in addition to the variation in composition.

Fast Numerical Modeling of a Conical Horn Lens Antenna

An axisymmetric 3D structure such as a conical horn antenna can be simulated in a fast and efficient way using only its 2D layout. In this model, the antenna radiation and matching characteristics are computed very quickly with respect to the dominant TE mode from the given circular waveguide by simulating the 2D axisymmetric geometry of an 3D antenna structure.

Doppler Shift

We have all noticed the Doppler effect when an ambulance passes by with its sirens blaring. The siren’s pitch suddenly drops the moment the ambulance starts moving away from you. Another effect you can notice is how the siren’s sound is very loud when nearby, but as soon as the ambulance has passed the sound becomes much quieter. This model simulates the acoustic Doppler effect by placing ...

Linear Wave Retarder

Combinations of optical devices such as polarizers and wave retarders can be used to control the intensity and polarization of transmitted radiation. In this model, two linear polarizers with orthogonal transmission axes are used to reduce the intensity of a ray to zero. Then the intensity and polarization of the transmitted ray are analyzed when a quarter-wave or half-wave retarder is placed ...

Rolling of a Rigid Wheel

The purpose of this model is to demonstrate pure rolling of a rigid wheel when given initial forward velocity together with lean about the forward direction. This is implemented through the Multibody dynamics module in COMSOL Multiphysics. The rolling motion of the wheel has been implemented without the use of contact.

Inflation of a Spherical Rubber Balloon - Membrane Version

The purpose of this model is to illustrate how the Membrane interface can be used to model thin hyperelastic structures. The example is identical to the Model Library model 'Inflation of a spherical rubber balloon', except that the Membrane interface is used instead of the Solid Mechanics interface.

Adhesion and Decohesion of Indenting Ball

A steel ball is pressed down against a rubber membrane. When the contact pressure exceeds a certain value, the two parts start sticking together. When the ball is retracted, the membrane is pulled upwards in the bonded region. During the retraction, the bond is partially broken. This happens when the stresses exceed the limits specified in the decohesion law.