Analyzing Heat and Mass Transfer During Cake Baking with Simulation

Bridget Cunningham April 26, 2017

Sometimes when you bake a cake, it doesn’t turn out how you expected. Part of this is due to the underlying heat and mass transfer phenomena that occur within the baking process, which affect the end result. With tools like the COMSOL Multiphysics® software, you can study and predict how these mechanisms work and use this knowledge to bake a better cake.

Read More

Bridget Cunningham January 13, 2017

For automotive designers, developing effective evaporative emission control systems in vehicles is an important task. Without these systems, volatile hydrocarbons can escape from a vehicle’s fuel tank, producing air pollution and smog. The COMSOL Multiphysics® software provides the features and functionality needed to model these systems in order to understand their operations and improve their performance. Here’s a look at one research team’s analysis of an evaporative emission control system for bioethanol-blend fuels.

Read More

Caty Fairclough December 15, 2016

For patients with renal failure, an efficient dialysis treatment is vital. One point of focus is designing high-performance dialysis equipment that increases contaminant removal, improving treatments like hemodialysis. To accomplish this, you can study aspects of the hemodialysis process, such as membrane dialysis devices, with numerical modeling apps. These apps, like the one discussed here, enable users to more quickly analyze the effects of different inputs and improve designs.

Read More

Bridget Paulus November 29, 2016

Transdermal drug delivery (TDD) patches continuously deliver drugs into the body for a certain amount of time. However, the skin is designed to keep out foreign substances, like drugs. To create a TDD patch that successfully bypasses this barrier, simulation can be used to study drug release and absorption into the skin. To analyze this process, Veryst Engineering created a TDD patch model with the COMSOL Multiphysics® software and compared the results to experimental data.

Read More

Bridget Cunningham November 17, 2016

Food packaging is often composed of recycled materials, like newspapers or plastic, which may contain residual mineral oil inks. Traces of these potentially hazardous substances leftover from the recycled materials can migrate from the packaging to the stored food. To account for this, one research team developed a numerical model to analyze the migration patterns of mineral oil hydrocarbons for various packaging situations. Compared to experimental studies, their approach offers a more efficient and cost-effective way of optimizing food safety.

Read More

Caty Fairclough October 19, 2016

In certain food and pharmaceutical industries, different types of dryers are used to dry heat-sensitive products. Vacuum dryers offer one solution for removing water and organic solvents from these sensitive substances. For optimal vacuum dryer design performance, engineers need to balance the dual needs of a rapid drying time and high-quality end products. To achieve this, you can study the vacuum drying process with the COMSOL Multiphysics® software.

Read More

Bridget Cunningham October 4, 2016

Environmental demands for greater fuel efficiency and lower emissions have sparked an interest in finding an alternative to traditional spark- and compression-ignition engines. While homogeneous charge compression ignition (HCCI) engines offer a viable solution, significant challenges like maintaining control of ignition timing still remain. With simulation tools like the COMSOL Multiphysics® software, you can analyze the combustion process of an HCCI engine and gain deeper insight into ways to advance ignition control.

Read More

Ed Fontes September 9, 2016

In recent versions of the COMSOL Multiphysics® software, we’ve added several new multiphysics interfaces that include the constituent interfaces as separate physics interfaces, with the couplings predefined in the model tree’s Multiphysics node. This provides you with the best of both worlds, combining the flexibility of the constituent physics interfaces and the user-friendly nature of the predefined multiphysics couplings. The latest version of COMSOL Multiphysics® — version 5.2a — is no exception with the new Reacting Flow multiphysics interface.

Read More

Caty Fairclough August 26, 2016

Around the world, trash is added to landfills at an increasingly rapid rate. Since these landfills take up large areas of land and can cause environmental issues, researchers are looking for safer, space-saving solutions. One option is to convert traditional anaerobic landfills into aerobic bioreactor landfills. This conversion process needs to be studied further, which could take years experimentally. For faster results, researchers at the University of Western Ontario used the COMSOL Multiphysics® software to efficiently analyze this process.

Read More

Caty Fairclough May 17, 2016

Tubular reactors are commonly used in the chemical industry, where they help with continuous large-scale production. To accurately analyze these devices, we can simulate the tubular reactor’s dissociation process. In this blog post, we compare isothermal and nonisothermal simulation studies. Such studies showcase multiple helpful features from the Chemical Reaction Engineering Module that you can use in your own simulations.

Read More

Bridget Cunningham April 25, 2016

Behind every glass of beer is a series of steps that deliver its unique taste. Fermentation, the process during which sugars are converted into alcohol, is one of these important steps. With the help of COMSOL Multiphysics, we can study the fermentation process, identifying ways to optimize its efficiency and serve up a better-tasting beer.

Read More


Categories


Tags

1 2 3 4